If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2-20n-32=0
a = 2; b = -20; c = -32;
Δ = b2-4ac
Δ = -202-4·2·(-32)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{41}}{2*2}=\frac{20-4\sqrt{41}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{41}}{2*2}=\frac{20+4\sqrt{41}}{4} $
| -5(6x+4)-5x=65 | | 2x-12=5x+7 | | 3x+8=15x-7 | | 6^(4x-5)=45 | | 4/3x=6x-14 | | 2k=k+6 | | 0.8+7.2c=5.5c | | 1.5-3.5y=-21 | | 16*x=30 | | 3x/4+3=8 | | 2x+20+5x-30=180 | | 2-+5x=33 | | 0.25x=4x-1 | | 6a^2-48a=0 | | -3w+8=-4 | | 9^-9y=12 | | 18+(-2)x=12 | | 2x-+18=26 | | 122+(-12)x=38 | | 15(1/3)y=5 | | 262144=4^n-1 | | (-7x)+1=43 | | 12.5=1.5/x | | (2x+6)(x-1)x=0 | | 24+0.44z=19+1.69z | | -2.5(2x+10)=-3x-10.2 | | 5(2q+4)=3(q+2) | | 5(2q+4)=3(q-2) | | 5(2q+4)=3(q=2) | | a^2+5^2=12^2 | | 2^(2x)+3^(3x)=146 | | 9n^2+18n+91=0 |